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ON FRONTS OF STRONG 

EQUATIONS OF 

A.G. 

AND WEAK DISCONTINUITIES IN SOLUTIONS OF THE 

DIFFERENT-MODULUS ELASTICITY THEORY* 

KULIKOVSKII and L.A. PEKUROVSKAYA 

The fronts in a different-modulus elastic body on which a change 
in the elastic properties occurs are classified. Fronts representing 
strong discontinuities (shocks) of low intensity as well as their 
corresponding simple waves are corttidered. The existence of weak 
discontinuities on which the conditions of continuity and the condition 
giving the change in the elastic properties do not yield a complete 
system of relationships on the front is proved. In this case an 
additional relationship is postulated. 

Models of different-modulus elastic bodies, i.e., bodies whose 
elastic properties change in a discontinuous manner, are proposed in 
/l-5/. Experimental investigations underlying the models are listed in 
/4-?/. The different-moduli phenomenon is often explained by the 
presence of shallow cracks, pores in the body. Different-moduli in 
fluids can be generated by phase transitions. Simple waves and certain 
other solutions for a barotropic medium in which the pressure 
dependence on the density has a break corresponding to fluid boiling 
have been obtained /B/. Solutions of the equations of motion of a 
different-modulus elastic medium corresponding to longitudinal waves 
were investigated /g-11/. The formulation and solution of certain 
problems for a two-parameter medium, a fluid with equilibrium phase 
transitions, have been given by Galin**. (**G.Ya. Galin, Phase 
transformation waves. Proceedings of the International Conference on 
"Modern Mathematical Problems of Mechanics and their Applications", 
Moscow, 1987.) Solutions of a number of static problems of elasticity 
theory are presented in /6/. 

Below, plane waves that are described by a complete system of 
elasticity theory equations, that are a hyperbolic system of 
seventh-order equations, are examined in an arbitrary elastic body. 

1. Characteristic velocity discontinuities. Plane waves in an elastic medium can be 
described by the equations /12, 13/. 

(1.1) 

Here x1, x2, x8 = x are Cartesian coordinates whose values for points of the medium at 
the initial time are taken as Lagrange variables, wt are displacement vector components in 
this coordinate system, p is the density of the initial state, and S is the entropy. The 
quantities ui, Vi, s are considered to be functions of x and t, while,@ = pU is the internal 
energy of unit initi,al volume of the medium considered as a function of the gradient tensor 
components of the displacements ZQ varying in the wave, the entropy S and possibly the 
Lagrange coordinate x. 

The matrix .A,, is constant in the classical theory of a linearly elastic body and 
B, = 0, Ci = 0. It will be assumed here that the second derivatives Aij of the elastic 
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potential Q, undergo a discontinuity while the potential itself and its first derivatives 
with,respect to uI are continuous. The dependence of cf, on S and x is considered to be 
fairly smooth. We consider the discontinuity of A,, in the space of the variables n1 
located on a certain surface 4(uiYS,x)= 0 defined by giving 6 as a function of its 
arguments. We call this surface the separation surface (SS). Its position in the space mi 
depends on x and S as on the parameters. 

Therefore, the SS is a second-order surface of weak discontinuity of the potential @ 
considered as a function of r&. As we known, only the second derivative df Q, with respect 
to the normal undergoes a discontinuity on such a surface. The SS divides the space ui 
into two parts which we denote byV*and V** and we give all quantities one or two asterisks 
if it is necessary to distinguish to what part of the domain in space the quantity refers. 

The characteristic velocities of system (1.1) are connected with the eigenvalues J.09 
of the matrix Aii by the relationships c(k) = (hWp)‘/:(k = 2, 2,s). Both hck) and C(k) are 
discontinuous together with Aij when passing through the SS. We will investigate these 
changes. 

We select a certain point ut on the SS for certain fixed values of the variables S 
and 5. We introduce the new variable Ui' related to tLi by an orthogonal transformation with 
constant coefficients. We direct the ul‘ axis parallel to the normal to the SS at the point 
LLi'. We direct the axes u2' and ua' so that they are orthogonal to the ul' axis so that 
a=wau,‘i3tk3’ = 0. We define new quantities Aij,BI, Cl by the same derivatives as in (1.1) 
but in the new variable Ui'. This is obviously equivalent to a tensor transformation of the 
original quantities. Let us also transform vi and Fi to the new axis. The transformations 
described above retain (1.1) as valid, since the left and right sides of these equations are 
transformed according to an identical vector law. We shall later use the new variables and 
omit the primes. 

In the new coordinate system the equation q =0 is written as u1 = ur" in the 
neighbourhood of the point tit0 to within higher-order infinitesimals, and only A, out 
of all the components of the matrix Ai1 is discontinuous at the point ui": Al,** -AA,,*fO. 
To fix our ideas, we will assume A,,** > A,,*. 

We write the characeristic equation to find the proper roots. while taking into account 
that A,, = 0, in the new coordinate system (A,, - h). (A,, - h) P (h) = 0 

P (h) I A,,2/(h - ’ A,,) T A,,W - A,,) f Au - h (W 

If 

A,,=#% 413PR A,,+& (1.31 

then the values &= A,,, h =A33 are not roots of (1.2). We will henceforth assume that 
h #A,,, ?+ # A,,. To be specific we assume Asa<As3 everywhere. 

A graph of the function P(h) is shown in Fig.1: h(k), (k = 1, 2, 3) are the roots of the 
equation P(h) = 0, they shift to the right as Al, increases and to the left as it decreases. 
Therefore, when satisfying conditions (1.31, the eigenvalues and characteristic velocities 
on different sides of the SS satisfy the inequalities 

It is interesting to note that inequalities analogous to (1.4) also hold during the 
elasticity-plasticity transition /14/, but one result is not a consequence of the other. 

2. S@Ze wives. Let us examine the solution of (1.1) for Ft = 0, s -con&, CAD/& = 
0 in the form ui = u1 (0 (x,1)), vi = it (0 (x, 1)), where g (zt t)# const is a certain function. 
Such solutions are called simple waves. Substitution of theabove-mentioned kinds of solutions 
into (1.1) yields 

It is hence seen that pea = h is one of the eigenvalues of the matrix AI,, while 
the derivatives 
41,. 

du,ldU are proportional to the appropriate eigenvector g; of the matrix 
A simple wave obviously corresponds to each eigenvector of the matrix 41,. 

We will examine a small neighbourhood of a certain point up of the interfacial surface 
and assume that the matrix A?,, takes the constant values At)** in the domain V+* and 4tP 
in the domain V*. The characteristic velocities will also be picewise-constant. Under such 
assumptions we neglect the process of slow wave deformation associated with the variability 
of c in each of the domains V** and V* leaving the wave deformation associated just with 
the jump.c. 
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Fig.1 

The solution in each of the domains V* or V** is COtl_ 

strutted as in the linear case, where the ui vary along a line 
parallel to the eigenvector in this domain while the solution 
contains the factor f(z - ct), where f is an arbitrary func- 
tion (that can contain the discontinuity). This means that in 
a simple wave the ui vary along a broken line with the break 
point on the SS (in certain special case it can turn out that 
there is no breakpoint). 

We will examine the change in the eigenvectors on passing 
through the SS. It can be seen that when conditions (1.3) are 
satisfied, all the eigenvectors have a component g, different 
from zero that is normal to the interfacial surface. This 
follows from the last two equations for the eigenvector com- 
ponents under the condition that (see Sect.1) -423 = 0, k z A,*, 

k PA,,, that is 

&gl + (A,, - 14 g, = 0, &g, ‘+ (A,, - hj g, = 0 (2.2) 
According to Sect.1, a decrease in A,, leads to an increase in fAz2 - Ii(*) 1 and JAJg - 

kc’, 1 and therefore, to a decrease in g,o)/g,@) and g3'Vg1(1) so that the eigenvector 
deviates towards the normal to the SS. We similarly obtain that as A,, diminishes, the 
eigenvector gi@) approaches the SS in the direction to the tangent plane. The ratio 

I kP)/g,(2) I increases for the eigenvector giP) while 1 g8(*)/g1'2) I decreases. 

When one or more of conditions (1.3) are violated, one or two eigenvectors become 
parallel to the tangent plane to the SS. This case will not be considered henceforth. 

The conditions of non-reversal of simple waves are obviously included in the case being 
considered in that the leading part of the wave should correspond to the greater value of 

A,, = -41, 
** and the trailing part to the smaller value of A,, =A,,*, i.e., a change in 

magnitude occurs in the non-reversing wave so that the point ni (z, t) goes from I/'** to 
V* for x = const as t increases. In physical space, the leading and trailing parts of 
the simple wave, in which Ui E V** and Ui'E V*, respectively, travel without deformation 
with constant but different velocities c** and c*, while a domain of constant values 
ui = u,o corresponding to the point on the boundary II, (Ui) = 0 between V** and V* 
is formed between them and increases linearly with time. For the opposite direction of 
the change in the quantities in a simple wave, the trailing part of the wave overtakes the 
leading part and an ambiguity occurs that should be removed by the introduction of a 
discontinuity (shockwave) into the solution. 

3. Shookuaves . Relationships expressing the conservation of momentum, energy and 
continuity of the displacements should be satisfied on the discontinuities 

PW[UJ = - [a@/%17 [@I = c(a@/%)- f1/2[~~)j~ULIl [&J 
w [Ui] = - [UJ (3.1) 

As is usual, here the square brackets denote jumps in the quantities in the brackets 
[Uil = u*+ - ui-, where the quantity directly in front of the discontinuity is denoted by a 
minus superscript and that behind the discontinuity by a plus superscript, and W is the 
velocity of the jump dxidt. 

Let us calculate the change in entropy in the discontinuity by assuming that the initial 
and final states are sufficiently close to the SS corresponding to the initial value of the 
entropy. Assuming the change in entropy in the wave to be small, we limit ourselves to a 
linear expansion of the potential Cg in the entropy at the point S- 

O(U,,S) =pT_(S - s-) + C&(uJ (3.2) 

It then follows from (3.1) that 

PT- [Sl = ‘iz [a@dautl [uil$_ (a@u’aui)- [UC] - [@iI (3.3) 

We expand the right side of the last equality in series in the quantities Anif in 
the neighbourhood of a certain point uio on the SS, where AU,* = u$-u~' and we expand 
to second-order infinitesimals. Taking into account that only the second derivatives of cD1 
are discontinuous, we obtain for LSJ 

pT-[Sl = (Aij-Auj- + l/z [Aljufll [USI - ‘/a [-%~Ui%] 

In the case under consideration, when only A,, is discontinuous of all the expansion 
coefficients, all terms not containing -1,, are cancelled from (3.4), we consequently have 

pT- [S] = ‘i2 [A,,] J Au,- 1 ) Aul+ ] 
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It is seen that only under the condition All+-AA,,->0 does the jump satisfy the 
requirement of a non-decrease in the entropy; in other words, only jumps with an increase 

in A,,, i.e., from V* into V** are possible. 
We note that these deductions are in agreement with the simple wave behaviour considered 

above in the sense that shockwaves exist when "reversal" of the appropriate simple waves 
occurs and do not exist otherwise. 

As is seen from (3.5), the change in entropy in the shock does not exceed the second 
order smallness but can be less or even vanish when either AU,- or Au,+ equals zero 
(in the latter case the initial and final states of the medium do not emerge outside the 
limits of the domain of linear behaviour). 

4. EvolutioMly conditians. The inequalities (1.4) enable us to list all the 
evolutionary fronts both with a continuous change in magnitude and those representing low- 
intensity discontinuities. In the latter case we shall also consider that the characteristic 
velocities in the states ahead of and behind the discontinuity agree, respectively, with 
c*(k) and CQ. 

As we know /15/, the evolutionary conditions in the general case are that the number 
of boundary conditions on a discontinuity should be one greater than the number of character- 
istics leaving the discontinuity. The velocity axis which the values c,(") and cj;l? divide 
into intervals,is shown in Fig.2. If the velocity of the discontinuity W belongs to any of 
these intervals, then the number of boundary conditions on the discontinuity needed for 
evolutionarity can be indicated depending on whether the states before and behind the front 
correspond to the states marked with the single and double asterisks, or conversely. The 
number of boundary conditions is indicated in Fig.2 above and below the appropriate intervals 
of velocity change. 

Fig.2 

5. The change in the quantities in the shocks, confirmation of the euotutMty 
conditions. Considering the shock to be weak and neglecting second-order infinitesimals (in- 
cluding the entropy change),we obtain from the first and third relationships in (3.1) 

Ai; [zL~] = a[~i] - [Ail] AU/ (CC = pW’) (5.1) 
Taking into account that according to Sect.1 only A,, has a non-trivial discontinuity 

and A,, = 0, we obtain from (5.1) 

[z+] = Alk (cc - A&l [u,], k = 2,3; J'+(a) [uJ = - [A,,] Au; (5.9 

where the function P is determined by (1.2) and the plus superscript denotes that A,, = A,,+. 
Obviously P+ (J.?k')= [A,,] > 0, and we obtain AU,+ (hl"') = 0 from the last equality in (5.2). 
It follows from this same equality that an increase in Au,+ occurs as P(a) diminishes, 
i.e., as a increases (Fig.1). For CL = h:"'P+ (a) vanishes, and Au,+ becomes infinite. 
Taking account of the first two equalities in (5.2), we obtain the related branch.of the 
curve in the space Ui 

ui+ = Ui'(W), c!?<IV<,<;k' (5.3) 

which can be called the shock adiabatic of the k-th shock wave. Comparison of (5.3) with 
the data of Fig.2 shows that the evolutionarity conditions are satisfied. 

This shock adiabatic, constructed for discontinuities with u,+> ul' can be supplemented 
in a continuous manner within the domain ut-=z u1O (where no change occurs in the elastic 
properties) by a line passing through the point ui- parallel to the k-th eigenvector of 
the matrix Aij-. This line corresponds to discontinuities within the domain V*, where, as 

follows from the results in Sect.2, w = c"' on this whole line. It can be shown that such 
a complete shock adiabatic will experience a break onintersectingthe surface IL1 = u10 and 

for w - hik', the tangent to it will tend to coincide with the appropriate eigenvector in 
the domain V** as U*"co. 

Jumps from the surface of separation in the domain V** will also be referred to the 
shocks. As follows from Sect.2 or directly from (5.2), these jumps occur in the direction 
of the eigenvector of the matrix A, ,I and propagated at the characteristic velocity. There 
is no entropy change in such jumps. 

Therefore all the fronts that are non-trivial low-intensity discontinuities in the 
neighbourhood of the surface of separation on which the conservation laws, the displacement 
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continuity conditions, and the condition of a non-decrease in the entropy are satisfied are 
either jumps (taking account of the boundaries) in one of the domains V* and V** or jumps 
from V* into V** (shockwaves). All these discontinuities are evolutionary and no other 
non-trivial discontinuities satisfying the conditions mentioned exist. 

6. &ntinuous fronts, add&Sonat relationships. A change' can obviously occur 
in the elastic properties of the medium as well as at-the fronts with a continuous change in 
magnitudes. The conditions of continuity for Uir Vi,S as well as the condition for crossing 
$(ui, S,x)=O, i.e., eight conditions, must be satisfied on these fronts. If only these 
conditions are satisfied, then for evolutionarity the front velocity (Fig.2) should lie in 
one of the following intervals: 

Analogous continuous fronts for purely longitudinal waves were considered and used to 
contruct solutions in /9-U/, where they are called signotons. 

As is seen from Fig.2, if the passage from V** to V* occurs in a continuous front and 
W satisfies one of the inequalities 

&'< w< &!, cP'< w<& &' <w<& (6.2) 

then still another "additional" condition should be added at the front to the eight conditions 
listed above for evolutionarity of the discontinuity. This is related to the appearance of 
an additional characteristic leaving the front in the case of (6.2). All the families of 
characteristics for the fronts (6.1) pass on one side of the front or the other, while there 
is one family of characteristics for the fronts (6.2) that leave from the front on both sides. 
It can be said that perturbations associated with this family of characteristics are radiated 
by the front. Consequently, continuous fronts of the type (6.2) can be called radiating as 
opposed to the non-radiating fronts (6.1). 

To set up the additional relationship we start from the following physical model of a 
discontinuity. We will assume that the change in elastic properties of a medium occurs in 
a continuous manner in a narrow layer in the space Ui, and the width of the layer then tends 
to zero. The equations of elasticity theory are assumed valid inside, as well as outside, 
such a layer. In this case the line representing a front of k-th type in the xt plane is 
replaced by a narrow strip within which a set of k-th family characteristics passes by, 
emerging from this cavity through both boundaries and leaving from it. The characteristic 
that was within this strip during this time can be found in any time interval. This means 
tht a relationship can be written in the k-th characteristic by taking into account that the 
velocity of its motion agrees, in the limit, with the velocity of motion of the' front 

) A,j - pW”Sij ) = 0 (6.3) 

( au. 
Pgf -g+w 2) +bg, (z&L -i- w 2) = B,g, $- + g,c, + g,F, 

63 is an eigenvector of the matrix Aii). The first of Eqs.(6.3) enables us to find an 
appropriate value of A,, for a given W (it can be seen that if 

A,, -c A::). 

&"' < W < cl”! then A: < 
After this the second equation (6.3) yields the desired additional relationship 

at the front, which can be written in the form 

(the direct derivatives denote differentiation along the front). 
In general, there can also be other models of a continuous radiating front; however the 

modification considered possesses the attractive quality that it remains within the framework 
of elasticity theory. 

In this connection, let us recall that fronts were considered /16/ on which a connection 
was made between the solutions of the wave equation and a first-order equation. Among the 
different kinds of fronts a radiating front ("a boundary of separation of the second kind") 
was also introduced. It is interesting to note that the additional condition on this front, 
obtained /16/ from all the other representations about its structure, agrees with the 
additional conditions found above that express the relationship on the characteristic. 
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SINGULARITIES OF THE INTERACTION OF A VIBRATING STAMP WITH AN 
INHOMOGENEOUS HEAVY BASE* 

V.V. KALINCHUK, I.V. LYSENKO and I.B. POLYAKOVA 

A method is developed for studying the fundamental characteristics 
of the wave process on the surface of, an initally isotropic prestressed 
elastic half-space caused by an oscillating rigid stamp. The following 
is taken as the model of the inhomogeneous medium: an elastic layer 
e< 5~ d h, xl,+ < m whose mechanical characteristics as well as the 
initial stresses are arbitrary, fairly smooth functions of the 
coordinate z1 in the general case, lies on the surface of a homogeneous 
half-space zQ > h, zl, 2) < 00 (z%, z,, zg are a rectangular Cartesian coordinate 
system). The linearized boundary value problem of the dynamic theory of 
elasticity of vibrations with frequency o for a rigid stamp on the 
surface of an inhomogeneous medium reduces to an integral equation or to 
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